»Where does It come from
sWaves and wave energy
sHow global climate change will influence waves
and wave transport
+Dune types and formation
sNatural dune communities
sIntroduced beachgrass and influence on beach and dunes
»Surf zone and sand dwelling organisms and food web
+Snowy plover biology
+Oregon beach law
+Fleld trip
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Eroding intermediate shore with high wave energy

P R T Y

Organic supp!?

i
!
i 3
L |
R
{ 1
{
! |

r— - = ; ! §
{ 1

» Y |

- '.-!,.’._'- ""‘ 1

| impoverished "large food web"

diverse "small food web"

 low C/N ratio

............

« oxic conditions

Menn, 2002



Accreting dissipative shore with low wave energy
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Fig. 1. Beach classilication based on 2 composite indices developed for sandy
shores: Dean's parameter [£1) and the Relative Tide Range. Dissipalive, inter-
mediate and reflective domains are defined for microtidal open beaches where
tde range <2 m (after Short 1996)
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Fig. 2. Conceptual model of latitudinal variations in species richness (number

of species per tfransect survey) and biomass (g m ') as a function of beach type,

as categorized by the Beach Index. The number of species increases at low

latitudes under conditions of (1) fine sands and flatter slopes, (2) benign swash

climates, and (3) increasing tide range. Biomass is also highest towards tidal

flats and increases from tropical to temperate sandy beaches (R = reflective,
[ = intermediate, D = dissipative, UD = ultradissipative, TF = tidal flat)



Marine species richness

Marine species richness
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sand particle size, beach face slope, tide range and the Beach Index (after
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Food web: based on

= Diatoms (swash, resurgence, retention)
= Detritus (throughout)
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TABLE 2. Estimates of annual production in
areas off the Washington and QOregon coasts, 1961

N Annual Range Mean daily
rea (gprcnfnl{"{étﬁlfl) (g Cm=2yr¥) (g Er;‘%_‘é‘at;‘;‘h)
1 { Oceanic) 61 43-78 0.17
2 (Plume) 60 4673 0.16
3 (River mouth) 88 0.24

4 (Upwelling) 152 0.42

Anderson, 1964



TABLE 4. Number of Common Murres at six colonies
in Oregon determined by aenal censuses conducted by

USFWS,
- o ) M. ﬂf.biTﬂE B
Colony C 1979 (datel | 1983 (date)

Bird Rocks 3,750 (7/16) 4,500 (7/3)
Grull Rock 3.200(7/16) 2.000(7/3)
Yaquina Head 3,000 (7/16) 2,769 (7/3)
Face Rock 3,500 (5/21) 800 (7/3)
Island Rock 6.600(7/11) 133(7/3)
Goat Island 1,850 (7/11) 0(7/3)

* Data from Pivman et al, (in press),

Hodder and Grayhbill, 1985



Food web: based on

= Diatoms (swash, resurgence, retention)
= Detritus (throughout)
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Dugan et al. 2003
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Fig. 2. Mean cover of macrophyte wrack on the beaches surveved.
Error bars represent standard deviations and * denotes the beaches
subject to grooming,
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Fig. 6. Scatterplot and regressions of species richness as a function of
the mean cover of macrophyte wrack for the ungroomed beaches
surveved. Closed circles are data for all wrack-associated species, and
open circles are for species of Coleoptera.
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Fig. 7. Scatterplot and regressions of macrofauna abundance as
a function of the mean cover of macrophyte wrack for the ungroomed
beaches surveyed. Closed arcles are data for all wrack-associated
species, and open circles are for species of talitrid amphipods,
Megalorchestia spp.
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Fig. 8. Scatterplot and least squares regression of the abundance of
wintering black-bellied plovers as a function of the mean abundance of
wrack-associated macrofaunal prey for ungroomed beaches.
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Castro, P. and M.E. Huber. 2003. Marine Biology. McGraw-Hill . New York, NY.




CMNP July 2010 Oregon coast introduction 

Slides:


1. Welcome to the master naturalist workshop on beaches and dunes of the Oregon coast.

7. Changes in A) Global average temperature and B) Global average sea level from 1850-2010

13. European beachgrass = thinner blades more extensive rhizomes, better at holding down sand dunes.  American beachgrass = broader blades, deeper blue-green, less extensive rhizomes. European beachgrass has drastically altered  our local dunes, creating a very stable foredune.

19. Fencing off the upper beach at Cannon Beach.  Shouldn’t be able to do as all Oregon Beaches are public.

http://www.opb.org/programs/oregonexperiencearchive/beachbill/player.php

http://www.opb.org/programs/oregonexperiencearchive/beachbill/player.php


CMNP July 2010 7 beach ecology


Slides:


3-4. Meifauna in between sand grains

(see Castro and Huber 2003 for general meifauna information)

5. High wave energy, high oxygen and low carbon to nitrogen ratio = not much organic accumulation as swept in and out rapidly.

6. With low flow shores=low wave energy, more organic accumulation (higher C:N ratio), less oxygen (anoxic)


7. Profile of Threemile Beach (higher wave energy?) with distribution of organisms along that profile from dune to swash zone.  Graph shows clustering of animal groups based on distriubtion along beach gradient

(see McLachlan 1990 for more information on dissipative beaches and macrofauna)


8. Profile of Whisky Run (lower wave energy?) with distribution of organisms along that profile from dune to swash zone.  Graph shows clustering of animal groups based on distriubtion along beach gradient.  More organic mass, more organisms, less turnover of carbon

(see McLachlan 1990 for more information on dissipative beaches and macrofauna)


9. Shows the dominance of the N Pacific High in the summer, which gives the NNW winds along the Oregon coast.  These winds are the upwelling winds, cause a surface current which veers to the west, which is replaced by upwelled water.

10. Types of beaches based on topography


11. Dean's parameter: Hb is breaker height (m), Ws is sand fall velocity (m/sec), based on sand grain size, and T is wave period (sec).

Lower Dean's parameter implies more destructive waves, harsher physical conditions, more reflective beaches.

12. Beach index developed by Mclachlan and colleagues to take into account the tidal range.  Mz is mean sand grain size in phi units + 1, TR is the maximum spring tide range in meters, and S is slope of the beach.  NOTE: sand grain size in phi units is misleading, phi is really sand grain smallness, increased phi means smaller grains.

14. R= reflective, I=intermediate, D=dissipative, UD=Ultradissipative, TF=tidal flat


15. Species richness and Biomass of organisms related to latitude and beach type (=beach index)


16. Positive correlations of sand particle size (top left), the inverse of beach slope steepness (top right), spring tide range, and beach index with species richness,


17. Growth rate and abundance of mole crabs decline with beach slope steepness


20. Foam = diatoms 


21. Chlorophyll due to blooms of diatoms and other phytoplankton


22. Shows that the upwelling winds disappear during the winter on the OR coast, when the Aleutian low dominates. 


23. Causing wind direction changes, changes in upwelling/downwelling regime.  Upwelling = more nutrient to surface water where enough light=phytoplankton bloom.


24. Change in wind direction = upwelling July-Aug and downwelling Jan. and Feb.


25. July Aug


26. Jan. Feb. above


27. Seasurface temperature cold against coast during upwelling when cold water brought up from depths


28. High chlorophyll in summer July August went nutrient rich upwelled and lots of sun in summer stimulate phytoplankton blooms.  Downwelling (Jan. and Feb.) does not show blooms.


29. Sea surface height lower as water moved offshore during upwelling (July-August) and higher during onshore movement during downwelling.

30. Upwelling with greatest production of carbon

31. Shows the effect of reduction of upwelling on seabird populations and hence the importance of upwelling on these populations

33. Wrack, Nereocystis etc.

34. This is the weight of the wrack, as a percentage of the original weight. 


37.  Beaches closer to rocky intertidal, or subtidal reefs, have more wrack, which is mostly a couple species of brown algae.


38. More wrack, more species that live on or around wrack.


39. Greater abundance of macrofauna with more wrack


40. More wrack = more birds eating whats on the wrack


41. More wrack, greater species richness of wrack and insect species


42. More wrack, more macrofauna.  ===Don’t groom beaches.


